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Abstract: The functional connectivity (FC) patterns of resting-state functional magnetic resonance
imaging (rs-fMRI) play an essential role in the development of autism spectrum disorders (ASD)
classification models. There are available methods in literature that have used FC patterns as inputs
for binary classification models, but the results barely reach an accuracy of 80%. Additionally, the
generalizability across multiple sites of the models has not been investigated. Due to the lack of
ASD subtypes identification model, the multi-class classification is proposed in the present study.
This study aims to develop automated identification of autism spectrum disorder (ASD) subtypes
using convolutional neural networks (CNN) using dynamic FC as its inputs. The rs-fMRI dataset
used in this study consists of 144 individuals from 8 independent sites, labeled based on three ASD
subtypes, namely autistic disorder (ASD), Asperger’s disorder (APD), and pervasive developmental
disorder not otherwise specified (PDD-NOS). The blood-oxygen-level-dependent (BOLD) signals
from 116 brain nodes of automated anatomical labeling (AAL) atlas are used, where the top-ranked
node is determined based on one-way analysis of variance (ANOVA) of the power spectral density
(PSD) values. Based on the statistical analysis of the PSD values of 3-level ASD and normal control
(NC), putamen_R is obtained as the top-ranked node and used for the wavelet coherence computation.
With good resolution in time and frequency domain, scalograms of wavelet coherence between the
top-ranked node and the rest of the nodes are used as dynamic FC feature input to the convolutional
neural networks (CNN). The dynamic FC patterns of wavelet coherence scalogram represent phase
synchronization between the pairs of BOLD signals. Classification algorithms are developed using
CNN and the wavelet coherence scalograms for binary and multi-class identification were trained and
tested using cross-validation and leave-one-out techniques. Results of binary classification (ASD vs.
NC) and multi-class classification (ASD vs. APD vs. PDD-NOS vs. NC) yielded, respectively, 89.8%
accuracy and 82.1% macro-average accuracy, respectively. Findings from this study have illustrated
the good potential of wavelet coherence technique in representing dynamic FC between brain nodes
and open possibilities for its application in computer aided diagnosis of other neuropsychiatric
disorders, such as depression or schizophrenia.

Keywords: autism spectrum disorder; multi-class classification; resting state fMRI; BOLD signal;

scalogram

1. Introduction

Autism spectrum disorder (ASD) is a psychiatric disorder caused by impairment in
brain functions [1]. ASD patients suffer from weakness in verbal and non-verbal com-
munication and difficulty in social activities, which may influence their life quality and
interpersonal skills. A report by the World Health Organization has indicated that, in 2019
alone, 1 in 160 children has ASD [2]. One of the challenges in clinical diagnosis of ASD
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is the lack of objective interpretation mechanisms of ASD [3]. Current practise of clinical
diagnosis of ASD is based on behavioral assessment, but with high heterogeneous nature
of ASD and varying clinical symptoms [4] may render the diagnosis to be inaccurate. Based
on the Diagnostic and Statistical Manual of Mental Disorders (DSM-4), ASD is categorized
into three subtypes based on symptom variations; autistic disorder (ASD), Asperger’s
disorder (APD), and pervasive developmental disorder not otherwise specified (PDD-
NOS) [5]. However, accurate behavioral assessment requires a trained psychiatrist and is
susceptible to human error either during the assessment or interpreting the results. This
issue may hinder the treating progress of the ASD patients. Indeed, an objective early ASD
detection and suitable therapeutic plans choice are essential in improving the condition
and quality of life of the ASD patients. In the past two decades, neuroscience studies have
been making progress in characterizing biomarkers for interpreting neural mechanisms of
ASD using functional brain imaging modalities [6]. In a similar trend, there is also a rapid
increase in application of artificial intelligence (AI) models in the medical diagnosis field,
especially in psychiatric disorders [7]. The use of Al has improved the diagnosis results and
decreased the decision time associated with the traditional diagnosis method. In ASD cases,
several studies are devoted to using resting-state functional magnetic resonance imaging
(rs-fMRI) data with different types of Al classifiers [8]. Generally, the functional magnetic
resonance imaging (fMRI) is a non-invasive modality and has emerged as a powerful tool
for depicting brain functionality of the cortex to deep brain regions. The fMRI provide
the estimation of neuronal activity based on blood-oxygen-level-dependent (BOLD) [9],
as indirect signals that reflect the fluctuation in brain blood flow and blood oxygenation
levels coupled to underlying neuronal activity [10]. In a resting state experiment, the func-
tional brain networks are detected without any specific tasks [11]. Using the BOLD signals
analysis at resting state helps neuroscientists to understand the fundamental mechanism
of brain functioning of ASD patients [7]. One common measure of brain functionality is
by using functional connectivity (FC) of BOLD signals between brain regions which gives
indication of the statistical correlation between different regions [12]. In general, there
are two main models applied in BOLD signals analysis, static (SFC) and dynamic (DFC)
functional connectivity [13], both can be used for detection of psychiatric disorders [14].
The SFC and DFC differ in their method of calculating the correlation coefficients. The SFC
represents the interaction between pairs of brain nodes as a single correlation coefficient
calculated from the BOLD signals of the entire scan but no temporal variations are consid-
ered in the calculation. In contrast, the DFC is calculated using wavelet transform, hence
capturing both time and frequency details of the BOLD signals. It indicated the coherence
strength between pairs of brain regions, represented in the form of two-dimensional matrix
called scalogram.

Classification of ASD Using Functional Connectivity (FC)—Related Works

Many researches on brain FC are focussing on identifying the neurological biomarkers
for ASD patients [15]. Application of SFC [10,12,16-18], and DFC [19] for detection of ASD
in rs-fMRI has been investigated in the past papers. This section summarized the related
works on ASD classification algorithms based on SFC and DFC as inputs to machine
learning (ML) [16,17,19] or deep learning architecture [10,12]. Recent advancement in
deep learning has enables the transfer learning technique which is known to effectively
improve the identification accuracy of diagnostic algorithms [20,21]. The number of SFC
features generated from correlation coefficients of the BOLD signals usually amount to
the order of thousands but the classification accuracy based on these features still need
to be improved. This is because only some regions of the brain carry the informative
features that discriminate ASD vs. normal control (NC). In [16] Chen et al. used Pearson
correlation of pairwise BOLD signals in low-frequency bands as input to support vector
machine (SVM), achieving 79% accuracy in ASD vs. NC prediction. In another work by
Abraham et al. [17], covariance matrices of pairwise BOLD signals are used as the input
features to an SVM classifier giving 67% accuracy. Recently, Chaitra et al. [18] achieved



Sensors 2021, 21, 5256

30f15

70.1% accuracy for ASD prediction using combination of Pearson correlation with complex
brain network measurements as input features to the recursive-cluster-elimination-SVM
(RCE-SVM) algorithm.

Apart from using conventional ML techniques, deep learning (DL) algorithms are
also used in the development of binary classification algorithms of ASD v. NC using
SEC features. The recent one by Heinsfeld, et al. [12], used two stacked denoising au-
toencoders to transfer 19,900 features of FC extracted based on the Pearson correlation
into the deep neural network (DNN), giving 70% classification accuracy. The other one
is by Zeinab, et al. [10], where Pearson correlation coefficients are input to the CNN as
images and binary classification accuracy of 70.2%. An approach using DFC between
pairwise BOLD signals by employing wavelet coherence transforms (WCT) was proposed
by Bernas et al. [19]. The WCT coefficients are used as the input vector to SVM achieving
80% accuracy for ASD vs. NC prediction. Apart from FC, the time-frequency components
of BOLD signals are represented into 2D images in our previous study [21] and used as
input to the CNN models for feature extraction, and k-nearest neighbors (KNN) as a best
classifier algorithm with 85.9% accuracy.

The ML-based techniques using either SFC or DFC are not able to capture the topolog-
ical information within the brain regions and the relationships between the neural activity
features and the clinical symptoms [22]. This is proven to be more difficult especially on
the highly heterogeneous symptoms, such as ASD subtypes. However, the results of the
studies mentioned above have had a minimal clinical impact. The reason for that is the vast
majority of these studies have typically reported differences between ASD patients and
normal controls, with best accuracy of 80%. At the same time, in clinical decisions, the ASD
subtypes should not be ignored. Thus, the multi-class classification algorithm is critical in
assisting ASD health practitioners in correct diagnosis of ASD subtypes. It is to be noted
that the SFC features may not carry sufficient information for multi-class classification [23].
Hence, a better choice would be using the DFC which represents correlation as a function
of time-frequency between BOLD signals. There is evidence that DFC patterns may play a
crucial role in identifying subtypes of psychiatric disorders, such as ASD. Indeed, the DFC
patterns have been rarely investigated as input features for ASD classification models.
In [19] wavelet coherence transforms (WCT) and SVM are used for binary classification of
ASD. With accuracy of 80%, this leaves much room for improvement.

In this work, we developed an ASD classification algorithm based on wavelet coher-
ence of BOLD signals and CNN. In specific, the calculation of the wavelet coherence are
calculated between the top-ranked brain node to the rest of the nodes of automated anatom-
ical labeling (AAL) atlas. Method of statistical significance analysis is employed on the
power spectral density (PSD) of the BOLD signals from 116 brain nodes to determine the
most significant node in multi-class (3-level ASD and NC) settings. A total of 115 wavelet
coherence scalograms generated for each subject, represent the time-frequency resolution
of the signal which may provide valuable information in identification of ASD subtypes.
Results generated from this work are using dataset from the autism brain imaging data
exchange (ABIDE) [24] which is an online data source for rs-fMRI data of ASD patients
and normal control (NC) groups collected from several neuroscience laboratories world-
wide. The rest of this study is organized as follows. Section 2 describes the materials and
proposed methods, including the data preparation, BOLD-dynamic features extraction and
classification models. The results and comparison with benchmark studies are explained
in Section 3 providing conclusions and future works in this area in Section 4. The objective
of this study is to develop an automated ASD subtypes classification using DFC patterns
of rs-fMRI data. DFC features extracted using pairwise WCT, inherently leveraging the
rich information of the WCT both in time and frequency domains.
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2. Materials and Methods

Overall methodology in the development of automated ASD subtypes classification us-
ing DFC patterns of rs-fMRI data is illustrated in Figure 1. Here, we consider 2 classification
techniques, binary and multi-class classifications.

: @ Brain Nodes BOLD Signals ‘
! Pre-Processiny i
H Database e Definition Extraction
| > ” [ i |

i BOLD Dynamic Feature
! Extraction

BOLD Coherence
(calogram)

ANOVA Test

Classification Models b

Convolutional Neural Network

Performance Evaluation

Figure 1. Methods for development of binary and multi-class classification of BOLD fMRI signals
using wavelet coherence and CNN.

2.1. Data Preparation

In this study, resting-state fMRI data are collected from multiple sites of ABIDE
dataset [24]. The ABIDE data contain longitudinal relaxation time (T1) structural MRI brain
images, fMRI images, and phenotypic information of the patients. Although ABIDE has
more than 1000 subjects, with 446 ASD and 590 NC, coming from various contributors, not
all ASD data are labeled based on the subtypes of DSM-4. Specifically, the available data
based on DSM-4 are 323 ASD, 87 APD, and 36 PDD-NOS subjects. To avoid the issue of
an imbalanced dataset which might affect the performance of the classifier, the number
of subjects for each group is set at 36, the smallest sample size of ASD class. Details on
the dataset, its scanning parameter and the number of subjects are listed in Table 1. All
datasets were acquired using 3 Tesla (3T) MRI scanners.

The use of multi-site data introduces larger data variance during the training of the
classifier due to differences in scanning parameters or type of scanner. The multi-site data
may pose a challenge in generalizing the trained ASD classifiers [12] and this issue will be
experimented here using leave-one-site out validation method.

Table 1. Details fMRI ASD subtypes and NC dataset from ABIDE database, acquired using 3T MRI scanner.

Subjects
. Voxel Size Flip Angle TR Time Points .
Site Country Vendor (mm?) (deg) (se0) (se) ASD APD PDD- NC Total-per Site
NOS
NYU USA Siemens 1.3 7 2 175 9 8 5 9 31
SBL Netherlands Philips 1 8 22 195 9 5 6 9 29
SDSU USA GE 1 45 2 175 9 6 2 9 26
Trinity Ireland Philips 1 8 2 145 - 4 7 - 11
Yale USA Siemens 1 9 2 195 9 5 14 9 37
USM USA Siemens 1 9 2 235 - - 1 - 1
KKI USA Philips 1 8 2.5 151 - 8 - - 8
UM1 USA GE 12 15 2 295 - - 1 - 1
Total 36 36 36 36 144

Legend: NYU: New York University, SBL: Social Brain lab, SDSU: San Diego State University, Trinity: Trinity College Institute of
Neuroscience, Yale: Yale School of Medicine, USM: University of Utah School of Medicine, KKI: Kennedy Krieger Institute, UM: University
of Michigan, TR:Repetition Time.
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The selected data were pre-processed by using the DPARSF Matlab toolbox followed
by BOLD signals extraction [25] from 116 regions of the automated anatomical labeling
(AAL) atlas. The AAL atlas divides the brain region into 116 nodes, as shown in Table A1
under the Appendix A. Since there is variation in recording time, the number for sample
points of the BOLD signals varies from one site to the other. Therefore, in order to work
with the same length of data, the signal is truncated to the shortest sample point, which is
145 time points.

2.2. Statistical Analysis Using Power Spectral Density (PSD)

The dimension of the BOLD time series for each subject is 145-points x 116-region.
If the WCT between all brain nodes are to be used in this investigation, the number
of scalogram images for each subject alone will be (115 x 116)/2 = 6670 which is a
large number of images. Furthermore, some of these images may not have a meaningful
contribution in the classification of ASD subtypes, thus, would be detrimental to the
classification performance. Therefore, a group-level statistical test is performed to select
the most significant brain node based on the PSD of the BOLD signals. Power spectral
density of the BOLD time-series signals is estimated using Welch method [26].

Detail of the steps for finding the top-ranked node using the mean value of PSD is
given in Algorithm 1. The PSD values of each 116 brain regions determined using Welch are
normalized to zero mean and standard deviation of 1. Normalization is deemed necessary
here since the dataset is obtained from different sites, thus ensuring the reliability of the
statistical analysis. Next, the average of the normalized PSD values are used as the input
for one-way analysis of variance (ANOVA) test.

Algorithm 1 Method of finding the top-ranked node in discriminating 3-level ASD subtypes
and NC using mean value of PSD.

1.  Input data = matrix (m x n)

m = 36 (number of subjects) , n = 4 (number of group)
2. BOLDsignals =t x R;
t = time points , R; = node number (j=1,2,...,116)
PSD = estimate PSD for each BOLD signal
PSD,, = normalize and determine the average of the PSD values
G;j = cluster the outcome of (4) into matrix (m X n)
p-value = run ANOVA test for each cluster (G;)
While j < 116 repeat step 6
If p-value < 0.05
save p-value at T
else T = empty
7. F =Find top-ranked node based on T-index

o G

2.3. Wavelet Coherence of BOLD Time-Series Signals

Wavelet coherence of two signals is a measure of linear interaction or correlation
between the signals. Since the wavelet transform provides both time and frequency
domain representation of signals, WCT measures the mean resultant vector length of the
cross-spectral density between two signals. In another word, the WCT will provide the
phase synchronization between the pairwise BOLD signals [13,27].

Firstly, the time-frequency components for each BOLD signal were extracted by using
a continuous wavelet transform (CWT). The CWT coefficient is defined as the convolution
of the BOLD time series x(t) with the scaled and translated version of the mother wavelet
P05 (t) [28], as shown in Equation (1).

CWT(a,b) = % /_0:0 x(H)y* <t - b)dt, (1)
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where a denotes wavelet scale, b denotes positions and * denotes the complex conjugate [29].
The complex Morlet wavelet was selected as the mother wavelet. Morlet has the best ratio
(1.03) between frequency band and wavelet scale, which helps interpreting results in
the frequency domain [28]. CWT is becoming a popular method in biosignal analysis
due to its ability to uncover meaningful information of non-stationary signals such as
electroencephalogram (EEG) [30] and BOLD fMRI signals [19,21]. In fact, WCT based
on CWT, characterizes coherence measures between two signals at multiple time scales,
essentially makes no assumption about the stationarity of the input signals. Accordingly,
CWT has achieved reasonable trade-off between time and frequency components [31,32].

In the subsequent step, the common power between the pairwise of BOLD signals x,
y is measured at various scales 2 and time shift b by Equation (2):

Cayla,b) = S(C3(a,b)C,y(a, b)) @

where Cy(a,b) and Cy(a, b) denote the CWT of x and y at scales a and positions b, the su-
perscript * is the complex conjugate, and S is a smoothing operator in time and scale.
Then, the WCT between x and y is calculated by Equation (3):

| Cxy(a,b) |2
(S [ Cula,b) P)(S | Cyla,b) [2) ®)

WCTyy =

The WCT coefficients were represented as 2-D images involving the phase synchro-
nization features of pairwise BOLD signals called scalogram images and will be used as
the input of CNN for classification.

The scalogram image is a form of DFC between 2 BOLD signals, represented as phase
synchronization patterns. In our proposed study, all coherent synchronicity features are
represented as 224 x 224-pixel images and used as the input for CNN in binary and
multi-class ASD classification models.

These images are the WCT between the most significant node, as determined using
ANOVA test with the rest of 115 brain regions. This pairwise calculation of WCT between
the top-ranked node and 115 brain regions is illustrated in Figure 2, which will produce a
total of 115 scalograms per subject.

Pairwise BOLD Wavelet Coherence  Scalogram
signals Transform

AILT™, ' -
(Tep-ranked node, 1)
—~ -
Groups

_—
(Top-ranked node, 2) U.'-'V N = Subject#1,Subject#2 ....... Subject #36

Training & Testing Data

o
= Input to CNN
—xormA

= Subject i#1, Subject #2 ....... 5uhje:1#36| APD
o

k- Subject #1, Subject#2 ....... Subject nas| PDD-NOS

- . . . . NC
N, = Subject #1, Subject#2 ....... 5uh|e:1#35-

Figure 2. Wavelet coherence of pairwise BOLD signals between top-ranked node and 115 brain nodes.

2.4. Convolutional Neural Network (CNN)

CNN is one of the essential deep neural networks related to applying local convo-
lution filters for extracting regional information. CNNs are designed to process multiple
data types, particularly two-dimensional variables, and are specifically influenced by the
working principle of the brain’s visual cortex. There is a hierarchy of two basic cell types in
the visual cortex: plain cells and complex cells. Simple cells respond to primitive patterns in
visual stimulation sub-regions, and complex cells synthesize information from simple cells
to recognize more complicated types. Since the visual cortex is such an efficient and normal
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visual processing device, CNNs are used to mimic three main ideas: local connectivity,
position invariance, and local transformation invariance. Groups of local weighted sums,
called feature maps, are obtained at the end convolution layer by computing convolutions
between local patches and weight vectors called filters for extracting the strongly clustered
sub-regions of features. In addition, because similar patterns may occur irrespective of the
data position, filters are repeatedly implemented throughout the whole dataset, which of-
ten increases the accuracy of the trained network by minimizing the amount of parameters
to be trained [33]. In this work, We proposed a 3-layer CNN model for identifying ASD
subtypes based on scalogram classification, using the CNN structure as shown in Figure 3.

0.25 dropout layer +
SoftMax layer

Conv 1 + BN + Relu Conv 2 + BN + Relu Conv 3 + BN + Relu ouTPUT
(7x7) (7x7) (3x3) l ‘
‘ Max-pooling Max-pooling Max-pooling ,O\

lﬂﬂl (3x3) 2x2)

MU\ | -
nn 3
1 \" —3
- N
INPUT 7filters 7 filtars 128 ilters 128 filters S12filters  512filters
(224 x224x3) (222x222x7) (110x 110x7) (108 x 108x 128} (53x53x128) (53x53x512) [26x26x512)

Figure 3. Training parameters: Batch size = 32, Epochs = 20, Learning rate = 0.0005. 3-layer
CNN architecture for wavelet coherence scalogram classification into three ASD subtypes and
normal control.

2.5. Performance Evaluation Metric

In order to analyze the performance of the proposed models, the following metrics (4)
to (8) were chosen. True positive (TP) is the number of ASD patients, and true negative
(TN) is the number of NC individuals correctly identified. Conversely, false positive (FP)
is the number of ASD patients, and false negative (FN) is the number of NC individuals
incorrectly identified.

Precision = TP+ FP PTF P (4)
Sensitivity = 7TP1—;—PF N ©)
Specificity = 7TNT—TF P (6)

Aceuracy = 75— ;:i[j-i]]\j-i- FN @)
Foscore — 2 x Precision x Sensitivity ®)

Precision + Sensitivity

The sensitivity measures the effectiveness of proposed models to identify ASD pa-
tients correctly, and the specificity measures the effectiveness of models to identify NC
individuals. Accuracy is the percentage of total effectiveness of a model. To evaluate
our proposed models practically like in clinical set up, we calculate precision and F-score,
respectively. The precision refers to the percentage of compatibility between the actual
ASD patient class and patient class identified by the model. F-score is calculated from the
precision and sensitivity of the model. The highest possible value of an F-score is indicating
a perfect model performance.

Moreover, to analyze the general classification performance of multi-class models,
we have chosen the macro-average evaluation, which makes an averaging calculation by
class, not the subjects. The macro-average reduces the multi-class identifications down to
multiple sets of binary classification, calculates the corresponding metric for each of the
binary cases, and then averages the results [34].
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3. Results and Discussion

In this section, the performance of ASD classification algorithms using wavelet co-
herence of rs-fMRI signals and CNN are evaluated. Two frameworks are experimented,
binary classification (ASD and NC) and multi-class classification (ASD, APD, PDD-NOS,
and NC). Prior to the classification, the most significant brain nodes need to be determined
to ensure meaningful wavelet coherence features are input to the CNN.

3.1. Selection of Top-Ranked Brain Node for Classification of ASD Subtypes via Statistical Analysis

As the first step in a statistical significance test, the mean PSD values of BOLD signals
from 116 brain regions are determined as the input to group-level statistical significance
tests. Results of the p-value are tabulated in Table A1, under Appendix A. From the p-value,
it can be revealed that putamen_R node is the most significant node in discriminating the 3
ASD classes and NC. The location of putamen_R node, the 2nd (caudate nucleus_L) and
3rd ranked nodes (superior temporal gyrus_L), are shown in Figure 4. Further analysis
on the PSD values of putamen_R node is shown as a boxplot in Figure 5. From the
boxplot, it is clear that the PSD value is the highest for ASD among the 4 groups, while the
lowest is for NC. These results indicate that there is significant variation of PSD based on
putamen_R activity.

In other words, it is indicative that the top-ranked node activity plays an essential
role in ASD subtypes classification. The results in this section corroborate the findings
in neuroscience studies which reveal that the putamen and caudate are part of the basal
ganglia group primarily responsible for motor learning, executive functions, behaviors,
and emotions. Several neuroscience studies [1,35,36] demonstrated that the volume in the
brain region of putamen node increase in the patients with ASD, followed by the volume
differences in the brain region of putamen node among ASD subtypes might reflect the
variations of the symptoms of ASD.

1% Node
Putamen Right

[ Superior Temporal Gyrus Left

Brain nodes scale

Figure 4. Top-three ranked brain nodes for classification of 3-level ASD subtypes and NC, determined
using ANOVA analysis of mean value of PDC.
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<1018 Putamen node

Mean of PSD

ASD APD PDD-NOS NC
Groups

Figure 5. Statistical comparison of 3 ASD subtypes and NC based on PSD of putamen nodes.

3.2. Binary Classification Using Wavelet Coherence of Top Three Significant Nodes

In the first experiment, we evaluated the significance of wavelet coherence features ex-
tracted from top-three nodes; putamen_R, caudate nucleus_L, superior temporal gyrus_L,
and their combinations. Evaluation is conducted for discriminating ASD from NC us-
ing the proposed 3-layer CNN with the following training parameters: batch size = 32,
epochs = 20, learning rate = 0.0005, adaptive moment estimation (ADAM) optimizer and
ratio of training:validation:testing = 0.7:0.15:0.15.

The results for this experiment are presented in Table 2 where for single-node cases,
the best accuracy is 89.2% by the top-ranked node putamen_R which is consistent with the
result from ANOVA test, as presented in Section 3.1. As expected, the accuracy values for
the 2nd and 3rd ranked nodes are both lower than the 1st node.

Table 2. Performance of proposed CNN for binary classification using WCT of significant node(s) as
the input images, where the number of subjects is ASD = NC = 36.

Node for WCT Number of WCT Accuracy
Images per Class (%)
1st-node 4140 89.2
2nd-node 4140 84.9
3rd-node 4140 83.1
1st + 2nd-nodes 8280 85.5
1st + 3rd-nodes 8280 84.7
1st + 2nd + 3rd-nodes 12,420 81.7

In the case of combined nodes, although more images are available for training and
testing the CNN, the results show that it cannot exceed the performance of the 1st-node.
Notably, 1st + 2nd nodes yielded the highest accuracy higher than 2nd and 3rd nodes alone
but still lower than the 1st node alone. Subsequent combinations of 1st + 3rd nodes and 1st
+ 2nd + 3rd nodes still produce lower accuracy than the 1st node. Additionally, despite
larger training images for combined nodes, the additional images do not carry meaningful
features for discriminating ASD from normal NC.

3.3. Binary Classification Using Wavelet Coherence of Putamen_R Node

In this section, the Putamen_R node will be used for classification of ASD from NC.
Except for the cross-validation (CV) framework, the CNN training parameters are the same
as in the previous section. The training of the CNN is tested using 3 optimizers, root mean
square propagation (RMSPROP), stochastic gradient descent with momentum (SGDM),
and adaptive moment estimation (ADAM), and the results for different values of folds
are presented in Table 3. From the values of accuracy, sensitivity, specificity, precision,
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and F-score, it is evident that ADAM optimizer results in the best result for k-fold CV,
thus, the subsequent experiments are conducted using ADAM optimizer. Evaluation
of the proposed algorithm is further tested using k-fold cross validation and the result
is tabulated in Table 4. As expected, the performance improved as the number of fold
increases. However, it is notable that only marginal improvement is achieved as the fold
number is increased from 10 to 15 and 20.

Table 3. Percentage of accuracy, sensitivity, specificity, precision, and F-score (+standard deviation)
of 10-folds cross-validation for binary classification.

Optimizer Accuracy Sensitivity Specificity Precision F-Score

RMSPROP 84.5+1.8 85.1+25 843 +22 842 +2.38 84.6 1.9
SGDM 87.2£09 871+14 874+£15 874 £15 87.2+£09
ADAM 89.2+0.7 89.1+25 89.5+1.9 89.5+2.5 89.2+£0.5

Table 4. Percentage of accuracy, sensitivity, specificity, precision, and F-score (£standard deviation)
for binary classification of ASD vs. NC using k-fold cross-validation.

k-Folds Accuracy Sensitivity Specificity Precision F-Score
5-fold 88.6 1.5 88.7 £2.3 88.7 £2.3 88.6 £2.6 88.6 1.5
10-fold 89.2£0.7 89.1£25 89.5£1.9 89.5£25 89.2£0.5
15-fold 89.6 £ 1.6 889 £24 90.5£1.8 90.6 £2.1 89.7£15
20-fold 89.8 £1.7 90.1 £2.6 89.7£22 89.6 £2.5 89.8 £1.7

Since the rs-fMRI data were aggregated across ABIDE’s multi-site, validation tech-
nique based on leave one-site-out is used to investigate how well the CNN model gen-
eralized over different datasets. The results of this experiment are presented in Table 5.
With average accuracy of 86.8 &= 0.7% the proposed binary classification model is considered
as robust against the effects of different types of MRI scanners and scanning parameters,
as listed in Table 1.

Table 5. Percentage of accuracy, sensitivity and specificity (in%) for binary classification, ASD vs. NC
using leave-one site validation.

Site Accuracy Sensitivity Specificity Precision F-Score
NYU 87.5 88.3 86.8 86.5 87.4

SBL 86.9 87.6 86.2 85.9 86.7
SDSU 86.9 88.4 85.4 84.8 86.5
Yale 85.8 85.4 86.2 86.3 85.8
Mean 86.8 87.4 86.1 85.9 86.6

Further performance comparison for binary classification of ASD vs. NC with
other related work is presented in Table 6. Methods based on static FC of Pearson
correlation [10,12,17] and of covariance matrix [16] can only yield the highest accuracy
of 79.2%, inferior to the dynamic FC. Our proposed method that inputs WCT of puta-
men_R and 115 brain regions to CNN has shown to result in a good accuracy of 89.8%,
that is 9.8% higher than the dynamic FC based method proposed by Bernas et al. [19].
Although Bernas et al. [19] used the same WCT, the calculation of the WCT is between
7 brain networks and only in-phase components are input to the SVM classifier.



Sensors 2021, 21, 5256 11 of 15

Table 6. Comparison of the proposed ASD binary classification with previous papers.

o FC . Accuracy
Paper Classifier Modelling Method Subject (%)
Chen et al. 2016 [16] SVM Static FC Pearson 240 79.2
correlation
Abraham et al. 2017 [17] SVM Static FC Covariance 871 67
matrix
Heinsfeld et al. 2018 [12] DNN Static FC Pearson 1035 70
correlation
Bernas et al. 2018 [19] SVM Dynamic FC Wavelet 54 80
coherence
Sherkatghanad et al. . Pearson
2020 [10] DNN Static FC correlation 871 70.2
Our proposed method CNN Dynamic FC Wavelet 72 89.8
coherence

3.4. Multi-Class Classification

In the last experiment, the proposed model is trained for multi-class classification of
3-level ASD and NC taking scalogram images for four groups as its input. To evaluate
the performance of the proposed CNN model, the scalogram data is divided into 0.7
as training dataset, 0.15 as validation dataset and 0.15 as testing datasets. The rest of
the training parameters are the same as in Section 3.2. The proposed CNN is trained
using ADAM, SGDM, and RMSPROP optimizer and the results for each optimizer are
presented in Table 7. The best performance is achieved by the proposed CNN with ADAM
optimizer giving macro-average accuracy 82.1%. Detailed performance of each class is
presented in the confusion matrix, as shown in Figure 6. It is worth highlighting that to
date, the ASD subtypes classification has not been done in literature so in this first attempt,
with macro-average accuracy 82.1%, there are still opportunities for further enhancements
to the classification algorithm.

Confusion Matrix

510 29 27 65
ASH 206% 1.2% 1.1% 2.6%
30 511 51 a2
ﬁ ARD 1.2% 20.7% 2.1% 1.3%
o
=
-
a
3 pop 33 40 518 30
1.3% 1.6% 21.0% 1.2%
- 45 as 22 491
1.8% 1.5% 0.9% 19.9%
ASD APD PDD NC

Target Class

Figure 6. Confusion matrix for classification of WCT images of ASD subtypes and NC using
ADAM optimizer.
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Table 7. Macro-accuracy (in %) of multi-class classification using three optimization methods.

L. F1-Score(%) Accuracy (%)
Optimizer
ASD APD PDD-NOS Overall
RMSPROP 79.6 80.7 81.7 80.2
SGDM 80.9 79.8 80.6 80.3
ADAM 81.7 82.3 83.6 82.1

4. Conclusions and Future Works

In this study, we proposed scalogram-based classification models using the CNN to
identify ASD subtypes. The scalogram is generated based on wavelet coherence of pairwise
rs-fMRI BOLD signals of top-rank node and the rest of 115 brain nodes. The multi-class
datasets of ASD subtypes comprising 144 subjects are downloaded from the multi-site of
ABIDE website. Using statistical significance analysis of mean PSD values, putamen_R
node is identified as the most significant node. The WCT scalograms of putamen_R and the
rest of 115 nodes are then used as the input for training and testing the 3-layer CNN model.
In general, the WCT of pairwise BOLD signals is a 2D feature representation that measures
the phase synchronization between putamen_R to other brain nodes. Clearly, the extracted
feature is proven to be a discriminative BOLD signals descriptor for ASD subtypes and
may be a potential biomarker for diagnosis of ASD. The accuracy of 89.8% for binary
and 82.1% for multi-class classification, are obtained based on BOLD signals combined
from all subjects in respective class, which may not give true measure of its performance
for subject-based diagnosis. Therefore, training and testing the CNN on subject-based
needs to be investigated for assessment of its diagnostic ability as in clinical practices. In
addition, further investigation to improve its performance may consider utilizing different
brain atlases, such as Craddock (CC200, CC400) that extract more information from the
BOLD signals. Besides, the scalogram images can also be trained and tested on other
CNN architecture, such as residual or inception blocks for better classification of ASD
subtypes. Lastly, the phase synchronization between one significant brain node to the rest
may also be applied for classification of other neuropsychiatric disorders such as ADHD,
bipolar disorders, and schizophrenia. The present study approach of using WCT as DFC
of rs-fMRI BOLD signals opens a possibility for further research on new biomarkers of
psychiatric disorders.
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Appendix A
Table A1. p-Value for all brain nodes based on ANOVA test.

No. Region Label p-Value No. Region Label p-Value No. Region Label p-Value No. Region Label p-Value
1 Precentral_L 0.191 31 Cingulum_Ant_L 0.485 61 Parietal_Inf_L 0.971 91 Cerebelum_Crusl_L 0.570
2 Precentral R 0.115 32 Cingulum_Ant_R 0.911 62 Parietal_Inf_R 0.862 92 Cerebelum_Crusl_R 0.862
3 Frontal_Sup_L 0.061 33 Cingulum_Mid_L 0.653 63 SupraMarginal_L 0.912 93 Cerebelum_Crus2_L 0.352
4 Frontal_Sup_R 0.138 34 Cingulum_Mid_R 0.820 64 SupraMarginal_R 0.162 94 Cerebelum_Crus2_R 0.662
5 Frontal_Sup_Orb_L 0.052 35 Cingulum_Post_L 0.998 65 Angular_L 0.452 95 Cerebelum_3_L 0.010
6 Frontal_Sup_Orb_R 0.294 36 Cingulum_Post_R 0.146 66 Angular_R 0.414 96 Cerebelum_3_R 0.539
7 Frontal_Mid_L 0.365 37 Hippocampus_L 0.847 67 Precuneus_L 0.890 97 Cerebelum_4_5_L 0.653
8 Frontal_Mid_R 0.333 38 Hippocampus_R 0.389 68 Precuneus_R 0.396 98 Cerebelum_4_5 R 0.412
9 Frontal_Mid_Orb_L 0.733 39 ParaHippocampal L 0.052 69 Paracentral_Lobule_L 0.771 99 Cerebelum_6_L 0.425
10 Frontal_Mid_Orb_R 0.779 40 ParaHippocampal R 0.455 70 Paracentral_Lobule_R 0.910 100 Cerebelum_6_R 0.868
11 Frontal_Inf_Oper_L 0.800 41 Amygdala_L 0.176 71 Caudate_L 0.012 101 Cerebelum_7b_L 0.044
12 Frontal_Inf_Oper_R 0.470 42 Amygdala_R 0.386 72 Caudate_R 0.279 102 Cerebelum_7b_R 0.423
13 Frontal Inf Tri_L 0.300 43 Calcarine_L 0.490 73 Putamen_L 0.143 103 Cerebelum_8_L 0.951
14 Frontal_Inf_Tri_ R 0.417 44 Calcarine_R 0.714 74 Putamen_R 0.008 104 Cerebelum_8_R 0.900
15 Frontal_Inf_Orb_L 0.283 45 Cuneus_L 0.732 75 Pallidum_L 0.646 105 Cerebelum_9_L 0.836
16 Frontal _Inf Orb_R 0.973 46 Cuneus_R 0.750 76 Pallidum_R 0.561 106 Cerebelum_9_R 0.096
17 Rolandic_Oper_L 0.075 47 Lingual L 0.685 77 Thalamus_L 0.990 107 Cerebelum_10_L 0.903
18 Rolandic_Oper_R 0.131 48 Lingual_R 0.256 78 Thalamus_R 0.594 108 Cerebelum_10_R 0.836
19 Supp_Motor_Area_L 0.698 49 Occipital_Sup_L 0.615 79 Heschl_L 0.095 109 Vermis_1_2 0.649
20 Supp_Motor_Area_R 0.473 50 Occipital_Sup_R 0.608 80 Heschl_R 0.160 110 Vermis_3 0.329
21 Olfactory_L 0.982 51 Occipital_Mid_L 0.514 81 Temporal_Sup_L 0.045 111 Vermis_4_5 0.762
22 Olfactory_R 0.913 52 Occipital_ Mid_R 0.090 82 Temporal_Sup_R 0.830 112 Vermis_6 0.772
23 Frontal_Sup_Medial L  0.340 53 Occipital_Inf_L 0.487 83 Temporal_Pole_Sup_L 0.070 113 Vermis_7 0.738
24 Frontal_Sup_Medial R 0.183 54 Occipital_Inf_R 0.282 84 Temporal_Pole_Sup_R 0.917 114 Vermis_8 0.867
25 Frontal Med_Orb_L 0.928 55 Fusiform_L 0.749 85 Temporal_Mid_L 0.900 115 Vermis_9 0.592
26 Frontal_ Med_Orb_R 0.769 56 Fusiform_R 0.938 86 Temporal_Mid_R 0.113 116 Vermis_10 0.272
27 Rectus_L 0.096 57 Postcentral _L 0.878 87 Temporal_Pole_Mid_L  0.364

28 Rectus_R 0.871 58 Postcentral_R 0.108 88 Temporal_Pole_Mid_R  0.860

29 Insula_L 0.075 59 Parietal_Sup_L 0.984 89 Temporal_Inf_L 0.566

30 Insula_R 0.744 60 Parietal_Sup_R 0.144 90 Temporal_Inf_R 0.343




Sensors 2021, 21, 5256 14 of 15

References

1.  Pagnozzi, AM.; Conti, E.; Calderoni, S.; Fripp, J.; Rose, S.E. A systematic review of structural MRI biomarkers in autism spectrum
disorder: A machine learning perspective. Int. J. Dev. Neurosci. 2018, 71, 68-82. [CrossRef]

2. Autism Spectrum Disorders. Available online: https:/ /www.who.int/news-room/fact-sheets/detail /autism-spectrum-disorders
(accessed on 7 February 2021).

3.  Hansen, S.N.; Schendel, D.E.; Parner, E.T. Explaining the increase in the prevalence of autism spectrum disorders: The proportion
attributable to changes in reporting practices. JAMA Pediatr. 2015, 169, 56-62. [CrossRef] [PubMed]

4. Witwer, AN,; Lecavalier, L. Examining the validity of autism spectrum disorder subtypes. ]. Autism Dev. Disord. 2008,
38, 1611-1624. [CrossRef]

5. Mazurek, M.O,; Lu, E; Symecko, H.; Butter, E.; Bing, N.M.; Hundley, R.].; Poulsen, M.; Kanne, S.M.; Macklin, E.A.; Handen, B.L.
A prospective study of the concordance of DSM-IV and DSM-5 diagnostic criteria for autism spectrum disorder. |. Autism Dev.
Disord. 2017, 47, 2783-2794. [CrossRef]

6. Conti, E.; Mitra, J.; Calderoni, S.; Pannek, K.; Shen, K.; Pagnozzi, A.; Rose, S.; Mazzotti, S.; Scelfo, D.; Tosetti, M.; et al. Network
over-connectivity differentiates autism spectrum disorder from other developmental disorders in toddlers: A diffusion MRI
study. Hum. Brain Mapp. 2017, 38, 2333-2344. [CrossRef]

7. Thabtah, F. Machine learning in autistic spectrum disorder behavioral research: A review and ways forward. Inform. Health Soc.
Care 2019, 44, 278-297. [CrossRef]

8. Yin, W,; Li, L.; Wu, EX. Deep learning for brain disorder diagnosis based on fMRI images. Neurocomputing 2020. [CrossRef]

9.  Kassraian-Fard, P.; Matthis, C.; Balsters, ].H.; Maathuis, M.H.; Wenderoth, N. Promises, pitfalls, and basic guidelines for applying
machine learning classifiers to psychiatric imaging data, with autism as an example. Front. Psychiatry 2016, 7, 177. [CrossRef]

10. Sherkatghanad, Z.; Akhondzadeh, M.; Salari, S.; Zomorodi-Moghadam, M.; Abdar, M.; Acharya, U.R.; Khosrowabadji, R.; Salari,
V. Automated detection of autism spectrum disorder using a convolutional neural network. Front. Neurosci. 2020, 13, 1325.
[CrossRef] [PubMed]

11. Iidaka, T. Resting state functional magnetic resonance imaging and neural network classified autism and control. Cortex 2015,
63, 55-67. [CrossRef] [PubMed]

12.  Heinsfeld, A.S.; Franco, A.R.; Craddock, R.C.; Buchweitz, A.; Meneguzzi, F. Identification of autism spectrum disorder using
deep learning and the ABIDE dataset. Neurolmage Clin. 2018, 17, 16-23. [CrossRef]

13.  Hutchison, R.M.; Womelsdorf, T.; Allen, E.A.; Bandettini, P.A.; Calhoun, V.D.; Corbetta, M.; Della Penna, S.; Duyn, ].H.; Glover,
G.H.; Gonzalez-Castillo, J.; et al. Dynamic functional connectivity: Promise, issues, and interpretations. Neuroimage 2013,
80, 360-378. [CrossRef] [PubMed]

14. Menon, S.S.; Krishnamurthy, K. A comparison of static and dynamic functional connectivities for identifying subjects and
biological sex using intrinsic individual brain connectivity. Sci. Rep. 2019, 9, 1-11. [CrossRef] [PubMed]

15. Yahata, N.; Kasai, K.; Kawato, M. Computational neuroscience approach to biomarkers and treatments for mental disorders.
Psychiatry Clin. Neurosci. 2017, 71, 215-237. [CrossRef] [PubMed]

16. Chen, H.; Duan, X,; Liu, E; Lu, F; Ma, X.; Zhang, Y.; Uddin, L.Q.; Chen, H. Multivariate classification of autism spectrum disorder
using frequency-specific resting-state functional connectivity—A multi-center study. Prog. Neuro-Psychopharmacol. Biol. Psychiatry
2016, 64, 1-9. [CrossRef]

17.  Abraham, A.; Milham, M.P.; Di Martino, A.; Craddock, R.C.; Samaras, D.; Thirion, B.; Varoquaux, G. Deriving reproducible
biomarkers from multi-site resting-state data: An Autism-based example. Neurolmage 2017, 147, 736-745. [CrossRef]

18. Chaitra, N.; Vijaya, P.; Deshpande, G. Diagnostic prediction of autism spectrum disorder using complex network measures in a
machine learning framework. Biomed. Signal Process. Control 2020, 62, 102099. [CrossRef]

19. Bernas, A.; Aldenkamp, A.P.,; Zinger, S. Wavelet coherence-based classifier: A resting-state functional MRI study on neurodynam-
ics in adolescents with high-functioning autism. Comput. Methods Programs Biomed. 2018, 154, 143-151. [CrossRef]

20. Yu, K;Fu, Q.;Ma, H; Lin, T.R.; Li, X. Simulation data driven weakly supervised adversarial domain adaptation approach for
intelligent cross-machine fault diagnosis. Struct. Health Monit. 2021, 20. [CrossRef]

21. Al-Hiyali, M.I; Yahya, N.; Faye, I.; Khan, Z.; Alsaih, K. Classification of BOLD FMRI signals using wavelet transform and
transfer learning for detection of autism spectrum disorder. In Proceedings of the 2020 IEEE-EMBS Conference on Biomedical
Engineering and Sciences (IECBES), Langkawi Island, Malaysia, 1-3 March 2021; pp. 94-98. [CrossRef]

22.  Zhai, T,; Koriche, F; Wang, H.; Gao, Y. Tracking sparse linear classifiers. IEEE Trans. Neural Netw. Learn. Syst. 2018, 30, 2079-2092.
[CrossRef]

23. Billings, ].M.; Eder, M,; Flood, W.C.; Dhami, D.S.; Natarajan, S.; Whitlow, C.T. Machine learning applications to resting-state
functional (MR) imaging analysis. Neuroimaging Clin. 2017, 27, 609-620. [CrossRef]

24. Craddock, C.; Benhajali, Y.; Chu, C.; Chouinard, E; Evans, A.; Jakab, A.; Khundrakpam, B.S.; Lewis, ].D.; Li, Q.; Milham, M.; et al.
The neuro bureau preprocessing initiative: Open sharing of preprocessed neuroimaging data and derivatives. Front. Neuroinform.
2013. Available online: https://www.frontiersin.org/10.3389 / conf.fninf.2013.09.00041/event_abstract (accessed on 28 July 2021).

25. Yan, C.; Zang, Y. (DPARSF): A MATLAB toolbox for pipeline data analysis of resting-state (fMRI). Front. Syst. Neurosci. 2010,
4,13. [CrossRef] [PubMed]

26. Zhang,].; Yuan, Z.; Huang, J.; Yang, Q.; Chen, H. Quantification of the power changes in BOLD signals using Welch spectrum

method during different single-hand motor imageries. Magn. Reson. Imaging 2014, 32, 1307-1313. [CrossRef]


http://doi.org/10.1016/j.ijdevneu.2018.08.010
https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders
http://dx.doi.org/10.1001/jamapediatrics.2014.1893
http://www.ncbi.nlm.nih.gov/pubmed/25365033
http://dx.doi.org/10.1007/s10803-008-0541-2
http://dx.doi.org/10.1007/s10803-017-3200-7
http://dx.doi.org/10.1002/hbm.23520
http://dx.doi.org/10.1080/17538157.2017.1399132
http://dx.doi.org/10.1016/j.neucom.2020.05.113
http://dx.doi.org/10.3389/fpsyt.2016.00177
http://dx.doi.org/10.3389/fnins.2019.01325
http://www.ncbi.nlm.nih.gov/pubmed/32009868
http://dx.doi.org/10.1016/j.cortex.2014.08.011
http://www.ncbi.nlm.nih.gov/pubmed/25243989
http://dx.doi.org/10.1016/j.nicl.2017.08.017
http://dx.doi.org/10.1016/j.neuroimage.2013.05.079
http://www.ncbi.nlm.nih.gov/pubmed/23707587
http://dx.doi.org/10.1038/s41598-019-42090-4
http://www.ncbi.nlm.nih.gov/pubmed/30952913
http://dx.doi.org/10.1111/pcn.12502
http://www.ncbi.nlm.nih.gov/pubmed/28032396
http://dx.doi.org/10.1016/j.pnpbp.2015.06.014
http://dx.doi.org/10.1016/j.neuroimage.2016.10.045
http://dx.doi.org/10.1016/j.bspc.2020.102099
http://dx.doi.org/10.1016/j.cmpb.2017.11.017
http://dx.doi.org/10.1177/1475921720980718
http://dx.doi.org/10.1109/IECBES48179.2021.9398803
http://dx.doi.org/10.1109/TNNLS.2018.2877433
http://dx.doi.org/10.1016/j.nic.2017.06.010
https://www.frontiersin.org/10.3389/conf.fninf.2013.09.00041/event_abstract
http://dx.doi.org/10.3389/fnsys.2010.00013
http://www.ncbi.nlm.nih.gov/pubmed/20577591
http://dx.doi.org/10.1016/j.mri.2014.08.018

Sensors 2021, 21, 5256 15 of 15

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Cribben, I.; Haraldsdottir, R.; Atlas, L.Y.; Wager, T.D.; Lindquist, M.A. Dynamic connectivity regression: Determining state-related
changes in brain connectivity. Neuroimage 2012, 61, 907-920. [CrossRef] [PubMed]

Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61-78. [CrossRef]

Morabito, E.C.; Campolo, M.; Mammone, N.; Versaci, M.; Franceschetti, S.; Tagliavini, F.; Sofia, V.; Fatuzzo, D.; Gambardella, A.;
Labate, A ; et al. Deep learning representation from electroencephalography of early-stage Creutzfeldt-Jakob disease and features
for differentiation from rapidly progressive dementia. Int. . Neural Syst. 2017, 27, 1650039. [CrossRef] [PubMed]

Yahya, N.; Musa, H.; Ong, Z.Y.; Elamvazuthi, I. Classification of Motor Functions from Electroencephalogram (EEG) Signals
Based on an Integrated Method Comprised of Common Spatial Pattern and Wavelet Transform Framework. Sensors 2019, 19, 4878.
[CrossRef] [PubMed]

Rodriguez-Murillo, J.C.; Filella, M. Significance and Causality in Continuous Wavelet and Wavelet Coherence Spectra Applied to
Hydrological Time Series. Hydrology 2020, 7, 82. [CrossRef]

Grinsted, A.; Moore, ].C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time
series. Nonlinear Process. Geophys. 2004, 11, 561-566. [CrossRef]

Choe, J.; Lee, SM.; Do, KH.; Lee, G.; Lee, ].G.; Lee, S.M.; Seo, ].B. Deep Learning—based Image Conversion of CT Reconstruction
Kernels Improves Radiomics Reproducibility for Pulmonary Nodules or Masses. Radiology 2019, 292, 365-373. [CrossRef]
Albahri, O.; Zaidan, A.; Albahri, A.; Zaidan, B.; Abdulkareem, K.H.; Al-Qaysi, Z.; Alamoodi, A.; Aleesa, A.; Chyad, M.; Alesa, R;;
et al. Systematic review of artificial intelligence techniques in the detection and classification of COVID-19 medical images in
terms of evaluation and benchmarking: Taxonomy analysis, challenges, future solutions and methodological aspects. ]. Infect.
Public Health 2020, 13, 1381-1396. [CrossRef] [PubMed]

Sato, W.; Kubota, Y.; Kochiyama, T.; Uono, S.; Yoshimura, S.; Sawada, R.; Sakihama, M.; Toichi, M. Increased putamen volume in
adults with autism spectrum disorder. Front. Hum. Neurosci. 2014, 8, 957. [CrossRef] [PubMed]

Luo, X.; Mao, Q.; Shi, J.; Wang, X.; Li, C.S.R. Putamen gray matter volumes in neuropsychiatric and neurodegenerative disorders.
World J. Psychiatry Ment. Health Res. 2019, 3, 1020. [PubMed]


http://dx.doi.org/10.1016/j.neuroimage.2012.03.070
http://www.ncbi.nlm.nih.gov/pubmed/22484408
http://dx.doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
http://dx.doi.org/10.1142/S0129065716500398
http://www.ncbi.nlm.nih.gov/pubmed/27440465
http://dx.doi.org/10.3390/s19224878
http://www.ncbi.nlm.nih.gov/pubmed/31717412
http://dx.doi.org/10.3390/hydrology7040082
http://dx.doi.org/10.5194/npg-11-561-2004
http://dx.doi.org/10.1148/radiol.2019181960
http://dx.doi.org/10.1016/j.jiph.2020.06.028
http://www.ncbi.nlm.nih.gov/pubmed/32646771
http://dx.doi.org/10.3389/fnhum.2014.00957
http://www.ncbi.nlm.nih.gov/pubmed/25505401
http://www.ncbi.nlm.nih.gov/pubmed/31328186

	Introduction
	Materials and Methods
	Data Preparation
	Statistical Analysis Using Power Spectral Density (PSD)
	Wavelet Coherence of BOLD Time-Series Signals
	Convolutional Neural Network (CNN)
	Performance Evaluation Metric

	Results and Discussion
	Selection of Top-Ranked Brain Node for Classification of ASD Subtypes via Statistical Analysis
	Binary Classification Using Wavelet Coherence of Top Three Significant Nodes
	Binary Classification Using Wavelet Coherence of Putamen_R Node
	Multi-Class Classification

	Conclusions and Future Works
	
	References

